SOLUTION

FI NAL TEST SERIES NEET

XI (TYM) TEST-01
Date:19-01-2020

[PHYSICS]

1. (D) velocity of light in vacuum $c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{E_{0}}{B_{0}}$ velocity of light in medium $v=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{E}{B}$
2. (C) All except longitudinal strain are having dimensional formula
$\mathrm{E}=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
Dimensional formula of strain $=\left[\mathrm{M}^{0} \mathrm{~L}^{\circ} \mathrm{T}^{0}\right]$
3. (D) Significant figures do not change while converting from one system of unit into another so it will remain same
4. (A) $1 \mathrm{~J}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
$=\frac{\mathrm{kgm}^{2}}{\mathrm{~s}^{2}}$
$1 \mathrm{~J}=$ Force \times displacement
$=\mathrm{m} \times$ acceleration \times displacement
$=\mathrm{m} \times(\mathrm{a})^{2} \mathrm{t}^{2}$
$=1 \mathrm{~kg}(10)^{2} \times(60)^{2}$
$=10^{2} \times 36 \times 10^{2}$
$=3.6 \times 10^{5}$
5. (A) $F=P^{a} V^{b} T^{c}$
$\mathrm{F}=\mathrm{K}\left[\mathrm{P}^{\mathrm{a}}\right]\left[\mathrm{V}^{\mathrm{b}}\right]\left[\mathrm{T}^{\mathrm{c}}\right]$
$\left[\mathrm{MLT}^{-2}\right]=\left[\frac{\mathrm{F}}{\mathrm{A}}\right]^{\mathrm{a}}\left[\mathrm{LT}^{-1}\right]^{\mathrm{b}}[\mathrm{T}]^{\mathrm{c}}$
$=\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}\right]^{\mathrm{a}}\left[\mathrm{L}^{\mathrm{b}} \mathrm{T}^{-\mathrm{b}+\mathrm{c}}\right]$
$=\left[M^{a} L^{-a} T^{-2 a}\right]\left[L^{b} T^{-b+c}\right]$
$\left[M^{a} L^{-a+b} T^{-2 a-b+c}\right]$
by comparing LHS \& RHS
$\mathrm{a}=1$
$-\mathrm{a}+\mathrm{b}=1, \quad \mathrm{~b}=2$
$-2 a-b+c=-2$
$-2-2+c=-2$
$\mathrm{c}=2$
$\mathrm{F}=\mathrm{PV}^{2} \mathrm{~T}^{2}$

Alternative Solution
$\mathrm{P}=\frac{\mathrm{F}}{\mathrm{A}}$
Units of $A: m^{2}, V: m / s$
$\mathrm{F}=\mathrm{PA}$
$=\mathrm{P}(\mathrm{VT})^{2} \quad \mathrm{VT}: \mathrm{m}$
$\mathrm{F}=\mathrm{PV}^{2} \mathrm{~T}^{2}$
6. (B) $y=a b$

By simple definition of
Percentage error
$\frac{\Delta \mathrm{Y}}{\mathrm{Y}} \times 100=\frac{\Delta \mathrm{a}}{\mathrm{a}} \times 100+\frac{\Delta \mathrm{b}}{\mathrm{a}} \times 100$
7. (B) As per the definition
8. B
9. (A) As per the formula $V_{a v}=\frac{\int v d t}{\int d t}=\frac{g}{2}$
$\int_{0}^{\mathrm{T}} \mathrm{gtdt}=\frac{\mathrm{g}}{2} \int_{0}^{\mathrm{T}} \mathrm{dt}$
$\mathrm{g} \frac{\mathrm{T}^{2}}{2}=\frac{\mathrm{g}}{2} \mathrm{~T}$

$$
\mathrm{T}^{2}-\mathrm{T}=0
$$

$\mathrm{T}=1, \mathrm{~T}=0$
Consider $\mathrm{T}=1$
$\because \mathrm{v}=\mathrm{u}+\mathrm{at}$
$-\mathrm{v}=0-\mathrm{gT}$
$\mathrm{v}=\mathrm{g}(1)=\mathrm{g}$
10. (D) Velocity keeps decreasing with uniform rate and then its magnitude starts increasing with same rate [uniform retardation could also be the answer] Here (d) is correct answer.
11. (A) $V_{b \rightarrow g}=3 i+4 j$
$V_{r \rightarrow e}=-3 i-4 j$
$V_{b \rightarrow r}=V_{b}-V_{r}$
$=V_{b-g}-V_{r-g}$
$=3 \mathrm{i}+4 \mathrm{j}-(-3 \mathrm{i}-4 \mathrm{j})$

$$
=6 \mathrm{i}+8 \mathrm{j}
$$

12. (B) $\mathrm{t}=\frac{\mathrm{u}}{\mathrm{q}}=$ time of ascent
$\frac{\mathrm{u}}{\mathrm{g}}=2$
$\mathrm{u}=2 \mathrm{~g}=2 \times 9.8 \mathrm{~m} / \mathrm{s}$
$=19.6 \mathrm{~m} / \mathrm{s}$
13. (B) $y=A x-b x^{2}$
$R=\frac{\text { coefficient of } x}{\text { coefficient of }\left(-x^{2}\right)}=\frac{A}{B}$
or
$y=x \tan \phi\left(1-\frac{x}{R}\right)$
$y=A x\left(1-\frac{x}{A / B}\right)$
comparing above equations $\mathrm{R}=\mathrm{A} / \mathrm{B}$
14. (A) $\mathrm{R}=4 \mathrm{H} \tan \theta$
($\mathrm{R}=$ range, $\mathrm{H}=$ Maximum height)
$\mathrm{R}=\frac{\mathrm{u}^{2}}{\mathrm{q}}=\frac{20 \times 20}{10}$
$\mathrm{R}=40 \mathrm{~m}$
15. (D)

16. (B)

$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$45=u+6 a$
$\mathrm{s}=\mathrm{ut}+1 / 2 \mathrm{at}{ }^{2}$
$180=u(6)+\frac{1}{2} \mathrm{a}(6)^{2}$
$180=6 u+18 a$
$60=2 \mathrm{u}+6 \mathrm{a}$
$45=u+6 a$
$15=u$
17. (B) Time of ascent $=$ time of descent
(in case of no air resistance)
$\mathrm{t}=10 \mathrm{~s}$
18. (A)

The motion of all three persons will be as above. They will always be at the vertices of an equilateral triangle and finally meet at centroid.
The above problem can be solved by assuming that a person has to reach at centroid

$\mathrm{BP}=\mathrm{x} \cos 30^{\circ}=x \frac{\sqrt{3}}{2}$
$\mathrm{BO}=\frac{2}{3} \mathrm{BP}=\frac{2}{3}\left(\mathrm{x} \frac{\sqrt{3}}{2}\right)=\frac{\mathrm{x}}{\sqrt{3}}$
$\mathrm{t}_{\text {BO }}=\frac{B O}{v \cos 30^{\circ}}=\frac{\mathrm{x} / \sqrt{3}}{v \frac{\sqrt{3}}{2}}=\frac{2 \mathrm{x}}{3 v}$
19. (B)

$\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{x}=\mathrm{vt}$
$=\frac{1}{2} g\left(\frac{\mathrm{x}}{\mathrm{v}}\right)^{2}$
$t=\frac{x}{v}$
$\frac{10}{100}=\frac{1}{2} \times 19.8 \times \frac{1}{v^{2}}$
$\mathrm{v}^{2}=4.9 \times 10$
$\mathrm{v}=7 \mathrm{~m} / \mathrm{s}=700 \mathrm{~cm} / \mathrm{s}$

$$
\begin{aligned}
R_{\max } & =2 H+\frac{R^{2}}{8 H}=\frac{2 u^{2} \sin \theta}{2 g}+\frac{u^{4} \sin ^{2} 2 \theta \cdot 2 g}{g^{2} 8 u^{2} \sin ^{2} \theta} \\
& =\frac{u^{2} \sin ^{2} \theta}{g}+\frac{u^{4} 4 \sin ^{2} \theta \cos ^{2} \theta 2 g}{g^{2} 8 u^{2} \sin ^{2} \theta} \\
& =\frac{u^{2} \sin ^{2} \theta}{g}+\frac{u^{2} \cos ^{2} \theta}{g}=\frac{u^{2}}{g}
\end{aligned}
$$

Maximum range is obtained at 45°
\therefore Option (c) correct
21. (D) $\mathrm{AB} \cos \theta=\frac{\sqrt{3}}{2} \mathrm{AB}$
$\cos \theta=\frac{\sqrt{3}}{2} \quad \therefore \quad \phi=\frac{\pi}{6} \mathrm{rad}$
22. (A) For the physical quantitiy to be a vector it must obey the law of vector addition hence reason is correct explanation of assertion.
23. (B) $\overrightarrow{\mathrm{PQ}}=(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})-(\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-7 \hat{\mathrm{k}})$

$$
\begin{aligned}
& =4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+11 \hat{\mathrm{k}} \\
& |\overrightarrow{\mathrm{PQ}}|=\sqrt{4^{2}+5^{2}+11^{2}}=\sqrt{162}
\end{aligned}
$$

24. (D) Since the point of application of force does not moves hence work done is zero.
25. (B) Velocity will interchange.

Change in momentum of the particle at rest initially is mu
$\Delta \mathrm{P}=\mathrm{P}_{\text {final }}-\mathrm{P}_{\text {initial }}=\mathrm{mu}-\mathrm{o}=\mathrm{mu}$
$\Delta \mathrm{P}=$ Impulse
$\mathrm{mu}=\frac{1}{2} \mathrm{TF}_{0}$
$\mathrm{F}_{0}=\frac{2 \mathrm{mu}}{\mathrm{T}}$
26.
(B) $\mathrm{F}=\mathrm{N} \frac{\Delta \mathrm{P}}{\Delta \mathrm{t}}=\mathrm{N} \frac{\mathrm{mv}}{\Delta \mathrm{t}} \quad\left[\frac{\mathrm{N}}{\Delta \mathrm{t}}=200\right]$
$=200 \times 0.03 \times 30=180$ Newton
27. (D) $\mathrm{a}=\frac{\mathrm{mg}}{\mathrm{m}+\mathrm{m}}=\frac{\mathrm{g}}{2}=5 \mathrm{~m} / \mathrm{s}^{2} \quad(\because \mathrm{~m}=1 \mathrm{~kg})$

For the hanging mass
$1 \mathrm{a}=1 \mathrm{~g}-\mathrm{T}$
T=5 Newton
28. (B) To lift block up $\mathrm{T}=\mathrm{Mg}$

For boy $\mathrm{ma}=\mathrm{T}-\mathrm{mg}$

$$
\begin{aligned}
& \mathrm{ma}=\mathrm{Mg}-\mathrm{mg} \\
& \mathrm{a}=\left(\frac{\mathrm{M}}{\mathrm{~m}}-1\right) \mathrm{g}
\end{aligned}
$$

$\mathrm{h}_{2}=80 \mathrm{~m}$
40. (B) W.d $=\Delta \mathrm{KE}$
$\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{S}}=\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} m u^{2}$
$8+3-10=\frac{1}{2} 2 \mathrm{~V}^{2}$
$\mathrm{V}=1 \mathrm{~m} / \mathrm{s}$
41. (C) At highest point the kinetic energy is zero hence total energy is only potential
42. (D) $\frac{\mathrm{du}}{\mathrm{dx}}=-\mathrm{F}$

It represents force that is weight. The given quantity should have limit of force.
43. (C) $\mathrm{U}=\frac{1}{2} \mathrm{Kx}^{2}$
$2=\frac{1}{2} \mathrm{~K}\left(4 \times 10^{-2}\right)^{2}$
$\mathrm{K}=2500 \mathrm{~N} / \mathrm{m}$
$\mathrm{F}=\mathrm{Kx}=2500 \times 8 \times 10^{-2}=200 \mathrm{~N}$
44. (A) $\mathrm{P}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{V}}$
$=50+30+120=200 \mathrm{~W}$
45. (C) $\mathrm{V}=\sqrt{\mathrm{KS}}$
$\int \frac{\mathrm{ds}}{\sqrt{\mathrm{s}}}=\int \sqrt{\mathrm{K}} \mathrm{dt}$
$2 \sqrt{s}=\sqrt{\mathrm{K}} \mathrm{t}$
$s=\frac{k t^{2}}{4} \Rightarrow v=\frac{K t}{2}$
$\mathrm{W}=\Delta \mathrm{KE}$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{mv}^{2}-\frac{1}{2} \mathrm{mu}^{2} \\
& =\frac{\mathrm{mK}^{2} \mathrm{t}^{2}}{8}
\end{aligned}
$$

[CHEMISTRY]

46. (B)

No. of e^{-}gained 2×1

$$
=2
$$

Eq.wt $=\frac{\text { mol.wt }}{\text { n.factor }}$
n -factor \rightarrow change in oxidation state
So. eq. wt of Iodine is $=\frac{\text { M.W. }}{2}$
47. (B) Atomic wt. of metal =
$\frac{\text { no. of atom of oxygen } \times 16}{\substack{\text { no. of atom of } \\ \text { oxygen atom }}} \times \begin{aligned} & 16+\text { no.of } \\ & \text { atom of metal }\end{aligned} \times$ atomic wt..$~(100=\%$ of
$=\frac{16 \times 2}{16 \times 2+\mathrm{x}} \times 100=50$
$=\frac{3200}{32+\mathrm{x}}=50 \Rightarrow 3200=1600+50 \mathrm{x}$

$$
\begin{gathered}
50 x=1600 \\
x=32
\end{gathered}
$$

in 2nd oxide : 60% oxygen, 40% metal
moles of metal $=\frac{40}{32}=\frac{10}{8}=\frac{5}{4} \quad$ x $\quad 0$

$$
\text { Ratio }=5: 15
$$

mole of $\mathrm{O}=\frac{60}{16}=\frac{15}{4} \quad \Rightarrow 1: 3$
so formula will be $=\mathrm{XO}_{3}$
48. (B) Mass of ' S ' in sample :

100 kg contain $\mathrm{S}=1$
$1 \longrightarrow \frac{1}{100}$
2×10^{6} \qquad $\frac{1}{100} \times 2 \times 10^{6} \Rightarrow 2 \times 10^{4}$
wt of SO_{2} produced
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$32 \quad 32 \quad 64$
$2 \times 10^{4} \mathrm{~kg} \quad 2 \times 10^{4} \quad 4 \times 10^{4} \mathrm{~kg}$
49. (C) Balance equation of nicotine
2. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}+27 \mathrm{O}_{2} \rightarrow 20 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~N}_{2}$

From above equation.
2 mole nicotine gives 20 mol of CO_{2}
.1 , , 1 mole

$$
\text { Mass of } \mathrm{CO}_{2}=44 \mathrm{~g}
$$

50. (B) Weight of HCl present in 2.5 litmus sol $=3 \times 2.5=7.5 \mathrm{~g}$
mole in $7.5 \mathrm{~g} \mathrm{HCl}=\mathrm{H}^{+}=\frac{7.5}{36.5}=0.205$
$1 \mathrm{~mole} \mathrm{Al}(\mathrm{OH})_{3}=3 \mathrm{~mole}^{+}$
$\frac{0.205}{3} \mathrm{~mol} \mathrm{Al}(\mathrm{OH})=0.20 \mathrm{~s} \mathrm{~mole} \mathrm{H}^{+}$
1 tablet contain $=\frac{400 \times 10^{-3}}{77}$ moles

$$
=0.0051 \mathrm{moles}
$$

$=\frac{0.205}{3}$ moles contain $\simeq 14$ tablets
51. (A) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
\mathrm{x} \\
\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

$$
3 x+4(3-x)=10
$$

$$
\mathrm{x}=2
$$

ratio of $\mathrm{C}_{3} \mathrm{H}_{8}: \mathrm{C}_{4} \mathrm{H}_{10}=2: 1$
52. (A) $\mathrm{CH}_{3} \mathrm{OH}=\frac{2.5 \times 0.25 \times 32 \times 10^{-3}}{0.793}=0.025$
53. (C)
54. (B)
55. (B) Molecular weight 92 means $\mathrm{N}_{2} \mathrm{O}_{4}$
\Rightarrow Total no. of electron in $1 \mathrm{~N}_{2} \mathrm{O}_{4}$ molecule $=46$
$\Rightarrow 1 \mathrm{~g}$-atom $=1$ mole $\mathrm{N}_{2} \mathrm{O}_{4}$ molecule contain 46 N electrons
56. (C)
57. (C) 0.0835 mole have 1 g of hydrogen

1 mole have-

$$
\frac{1}{0.0835}=11.9 \text { of } \mathrm{g}=\text { hydrogen }
$$

$$
11.9 \simeq 12
$$

So, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
58. (B) For energy we use $(n+1)$ Rule
$\mathrm{n}+1$ for (b) is 5 maximum value.
59. (B) It's electronic configuration of chromium in ground state.
60. (A) Nodal plane in P_{x} is 1
61. (C) Diffraction is property of wave.
62. (D) Energy $\mathrm{n}=2$

$$
\begin{aligned}
& \mathrm{E}=\frac{13.6 \times \mathrm{Z}^{2}}{\mathrm{n}^{2}} \\
& =\frac{13.6}{4} \mathrm{ev}
\end{aligned}
$$

For $\mathrm{n}=3 \quad \frac{13.6}{9} \mathrm{ev}$
$\Delta \mathrm{E}_{3 \rightarrow 2}-\frac{13.6}{4}-\frac{13.6}{9}=1.9 \mathrm{ev}$
63. (A) Visible range means Balmer series. Transition would be $\mathrm{n}_{3} \rightarrow \mathrm{n}_{2}$
64. (C)Energy emmited is 12.1 ev . It means transition's from $\mathrm{n}=3 \rightarrow 1$. Angular momentum $=\frac{\mathrm{nh}}{2 \pi}, \mathrm{n}=3 \frac{3 \mathrm{~h}}{2 \pi}$

$$
\mathrm{n}=1, \quad \frac{\mathrm{~h}}{2 \pi}
$$

change $\frac{3 \mathrm{~h}}{2 \pi}-\frac{\mathrm{h}}{2 \pi}=\frac{\mathrm{h}}{\pi}$
65. (C) X-ray are neutral
66. (B) Energy required to dissociated one I_{2} molecule

$$
=\frac{240 \times 10^{3}}{6.023 \times 10^{23}}
$$

67. (A) work function of metal $=\frac{\mathrm{hc}}{\lambda_{0}}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{310 \times 10^{-9}}$
K.E emmited $=36 \times 10^{-20}$

Total energy $=\frac{h c}{\lambda}=h \nu$
$v=1.5 \times 10^{15} \mathrm{H}_{2}$
68. (A) In Balmer series $\frac{1}{\lambda}=\mathrm{RZ}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
$\frac{1}{\lambda}=\mathrm{R} \times 4\left[\frac{1}{4}-\frac{1}{16}\right]$
$=\mathrm{R} \times 4\left[\frac{3}{16}\right]=\frac{3}{4} \mathrm{R}$
check option

$$
\frac{1}{\lambda}=\mathrm{R} \times 1^{2}\left[1-\frac{1}{4}\right]=\frac{3}{4} \mathrm{R}
$$

So, option (a) is correct
69. (B) $\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{2 \mathrm{~m}_{2} \mathrm{~K} \cdot \mathrm{E}_{2}}{2 \mathrm{~m}_{1} \mathrm{~K} \cdot \mathrm{E}_{1}}}$
70. (B)
71. (A) energy of one photon $=\frac{\mathrm{hc}}{\lambda}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{4500 \times 10^{-10}} \mathrm{~J}$
$4.4 \times 10^{-19} \mathrm{~J}$
Power of Bulb $=150$ watt
150 watt $=150 \mathrm{~J} \mathrm{sec}^{-1}$
Actual energy emitted =

$$
\begin{gathered}
100-8 \\
1-\frac{8}{100} \times 150=12 \mathrm{~J}
\end{gathered}
$$

Total energy emmited $=$ no. of photon \times energy of one photon

$$
\begin{aligned}
& \mathrm{E}=\mathrm{n} \times \mathrm{h} \nu \\
& \mathrm{n}=\frac{12}{4.4 \times 10^{-14}}=27.2 \times 10^{19}
\end{aligned}
$$

72. (A) $\Delta x \times m \Delta v=\frac{h}{4 \pi}$

$$
\begin{gathered}
1 ـ \quad \frac{0.005}{100} \times 600 \\
=0.03
\end{gathered}
$$

$$
\begin{aligned}
\Delta \mathrm{x}=\frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 0.3 \times 4 \times 3.14} & \\
& =1.96 \times 10^{-3}
\end{aligned}
$$

73. (B) metallic character $\propto \frac{1}{\text { I.E. }}$
74. (D) I.E of P is more than S due to half filled orbital of P
75. (B) I.E of N is more than oxygen due to half filled orbital.
76. (D) Diagonal relationship
$\mathrm{Li} \rightarrow \mathrm{Mg}$
$\mathrm{Be} \rightarrow \mathrm{Al}$
$\mathrm{B} \rightarrow \mathrm{Si}$
77. (A) I, II \& III are correct
78. (B) In periodic table from left to right Acidic strength increases
79. (D) $\mathrm{Sn} \& \mathrm{Zn}$ oxide are amphoteric oxide
80. (A) Factural
81. (D) Aluminium have 3 valence e^{-}after removal of $3 \mathrm{e}^{-}$. It got noble gas configuration.
82. (C)
83. (B)

Terminal 3Cr-O bond from each side are in resonance due to which $6 \mathrm{Cr}-\mathrm{O}$ bonds are equivalent
84.
(D)

$\mu_{3}=0$

$=\mu_{1}>\mu_{2}>\mu_{3}$

85. (B)
86.

${ }^{H}{ }_{N}-\mathrm{N}=\mathrm{N}$
87. (D) $\mathrm{N}_{2}{ }^{\oplus}$ is paramagnetic due to pressure of unpaired electron.
88. (B) Overlapping between d-orbital of phosphorous and p orbital of oxygen atom
89. (B) $\mathrm{O}_{2}{ }^{2-}$ does not contain any unpaired electron
90. (C) Hydrogen is covolontly bonded with most electronegative atom

